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EXECUTIVE SUMMARY 
 

Modern day dismounted military are commonly required to perform high physical 
work at high intensities in a variety of environmental conditions while facing challenging 
training and combat engagements.  To optimize warfighter physical performance while 
providing protection from kinetic threats, tradeoffs must be made between physical 
performance and the adverse effects of the weight and functional characteristics of 
equipment and clothing carried and worn by the individual Soldiers.   

 
The work outlined in this report provides: 1) a quantitative assessment of the 

biophysical characteristics of three prototype body armor configurations, 2) a 
comparison to current baseline U.S. Army body armor systems, and 3) mathematical 
predictions of maximal work times in three different environmental conditions.  This work 
provides a cost effective and scientifically valid method of making comparisons of 
clothing and equipment changes prior to conducting human research. 
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INTRODUCTION 
 

Modern day dismounted military are commonly required to perform high physical 
work at high intensities in a variety of environmental conditions while facing challenging 
training and combat engagements.  To optimize warfighter physical performance while 
providing protection from kinetic threats, tradeoffs must be made between physical 
performance and the adverse effects of the weight and functional characteristics of 
equipment and clothing carried and worn by the individual Soldiers.   

 
The work outlined in this report provides: 1) a quantitative assessment of the 

biophysical characteristics of three prototype body armor configurations, 2) a 
comparison to current baseline U.S. Army body armor systems, and 3) mathematical 
predictions of maximal work times in three different environmental conditions.  This work 
provides a cost effective and scientifically valid method of making comparisons of 
clothing and equipment changes prior to conducting human research. 

 

METHODS 
 
Ensembles 
 

Three different body armor (BA) plus clothing ensembles were tested: Tiers 1, 3, 
and 4 (Figure 1).  Tier 1 clothing consisted of a cotton t-shirt, underwear, and green 
cotton socks, Flame Resistant Army Combat Uniform (FRACU) shirt and pants, Army 
issued canvas belt, and desert hot weather suede combat boots.  Tier 1 ballistic 
protection included a soft armor concealable vest, and Army combat helmet.  Tier 3 
clothing ensemble included Army Combat Shirt (ACS), underwear, green cotton socks, 
FRACU pants, Army issued canvas belt, gloves, and desert hot weather suede combat 
boots.  Tier 3 ballistic protection included a prototype tactical body armor vest with 
ceramic front, back, and side plates, and Army combat helmet.  Tier 4 clothing included 
underwear, green cotton socks, FRACU pants, Army issued canvas belt, gloves, and 
desert hot weather suede combat boots.  Tier 4 ballistic protection included a Full 
Spectrum, ballistic combat shirt (includes integrated neck and deltoid protection), 
prototype tactical body armor vest with ceramic front, back, and side plates, and Army 
combat helmet.   
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Figure 2. Baseline body armor (BA) ensembles BA-1 (A), BA-3 (B), and BA-5+(C) 

 
(see text for detailed description) 

 
Biophysical Assessments 

 
Biophysical testing was conducted using a twenty zone sweating thermal manikin 

(Newton, 20 zone, Measurement Technologies Northwest, Seattle, WA; 
http://www.mtnw-usa.com/) within a climate-controlled wind tunnel.  Tests were 
conducted for thermal and evaporative resistance according to American Society for 
Testing and Materials (ASTM) standards F1291-10 and F2370-10 [2-3].  Data 
generated were converted to measures of total thermal insulation (IT) in units of clo, a 
water vapor permeability index (im); the ratio of these two parameters describe the 
ensembles evaporative potential (im/clo) [4].   

 
In accordance with ASTM standards, both thermal resistance (Rct) and 

evaporative resistance (Ret) were tested under controlled isothermal conditions.  For 
testing Rct, chamber conditions were: air temperature (Ta) 20°C, 50% relative humidity 
(RH), wind velocity (V) 0.4 ms-1, manikin surface / skin temperature (Ts) was set at 
35°C.  The temperature difference of 15°C between Ts and Ta provided a temperature 
gradient between manikin and local environment needed to assess sensible (dry) heat 
exchange.  The power (W) used to maintain the Ts at 35°C was used to calculate the 
thermal resistance of each armor and clothing configuration.  To measure Ret, both Ta 
and Ts are set to 35°C, RH 40%, V of 0.4 ms-1.  By having Ta and Ts set to the same 
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temperature, all heat loss can be ascribed to evaporative (insensible / wet) heat 
exchange, therefore enabling a measure of evaporative resistance. 
 

Measurements at three wind velocities (V) enabled the calculation of coefficient 
(gamma) values (g) that describe the change in insulation and evaporative potential with 
increasing wind speeds [5].  Tests were replicated under the same environmental 
conditions but with increased V (1.2 and 2.0 ms-1) to determine the effect of increased 
air flow and V on both Rct and Ret,.   
 
 
Predictive Modeling 

 
Modeling and simulation of human thermal responses were conducted using the 

USARIEM Heat Strain Decision Aid (HSDA) [6].  The simulated human was a healthy 
male, weighing 70 kg, 172 cm tall, normally hydrated, and heat acclimatized.  Three 
simulated environments were used: hot-dry (desert) (49°C; 15% RH), hot-wet (jungle) 
(35°C; 75% RH), and temperate (35°C; 50% RH).  Each simulated environment was 
assumed to be at sea level and V conditions of 1.0 ms-1.  For each simulation, work 
intensities simulating a walking speed of 1.34 ms-1 (3 mph) was used.  Metabolic costs 
of walking were estimated using the equation from Pandolf et al [7], seen as:   

 

𝑀𝑀𝑊𝑊  = 1.5 · 𝑊𝑊 + 2.0 · (𝑊𝑊 + 𝐿𝐿) · � 𝐿𝐿
𝑊𝑊
�
2

+  ŋ · (𝑊𝑊 + 𝐿𝐿) · (1.5 · 𝑉𝑉2 + 0.35 · 𝑉𝑉 · 𝐺𝐺) (Eq. 1) 
 
where Mw = metabolic cost of walking (or standing) (in watts); W = body mass 
(kilograms); L = load mass (kilograms); ŋ = terrain factor (=1.0 for black top road); V = 
velocity (m/s); G = slope or grade (%).   

 
Differences in the mass among the ensembles drive the corresponding metabolic 

cost of locomotion (�̇�𝑀loco).  This �̇�𝑀loco is the energy cost, in watts, that it takes for the 
simulated male to walk at a speed of 1.34 ms-1 while carrying the additional mass 
associated with each BA ensemble; with the understanding that there is a curvilinear 
relationship between increased mass or velocity and increased energy demands [8]. 

 

RESULTS 
Biophysical Results 

 
The total thermal (IT, clo) (Figure 3) and evaporative (im) resistances, and 

evaporative potential (im/clo) (Figure 4) of each configuration were measured at three 
different wind velocities.  Wind velocities used Tier 1 and 3 were: 0.4, 1.2, and 2.0 ms-1; 
and for Tier 4 were: 0.58, 1.8, and 2.53 ms-1.  These measures obtained at three wind 
velocities enable calculations of wind effect coefficient values within the isothermal 
conditions (Table 1).  
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Figure 3.  Thermal resistance (clo) for the three prototype body armor (BA) 
configurations 

 
 

Figure 4.  Evaporative potential (im/clo) for the three prototype body armor (BA) 
configurations 
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DISCUSSION 
 

This report provides a structured approach to evaluating new body armor 
systems.  Specifically, a quantitative method is used to compare protective clothing and 
body armor configurations.  This type of modeling provides a scientific method for 
assessing physiological effects of clothing ensembles prior to conducting human subject 
research.  The study results show that under the modeled conditions there was very 
little difference between the prototype Tier systems and the baseline body armor 
systems with respect to the thermal burden imposed on the user.  Additional work is 
needed to address other performance elements, such as mobility and range of 
movement constraints associated with wearing these ensembles [9-11].  Follow on work 
is also needed for human factors assessments related to comfort, acceptability and 
usability specific to military operations and other worn equipment. 

 
Modular body armor systems often play a critical role in protective personnel 

from kinetic threats. However, body armor is encapsulating and heavy, compromising 
heat dissipation and increasing the metabolic costs of moving.  Using simple analogies 
from nature, a stationary testudines (turtles) with its armored shell can be very effective 
at protecting against threats but are less mobile than most unarmored animals and have 
a limited ability to actively respond to threats.  In contrast, felis (cat species) are very 
agile and capable of dynamic movements and offensive assaults, but are less 
protected.  Furthermore, evolutionary adaptations such as natural armor can be seen in 
animals based on their potential role as predators or prey [12].  In contrast to most 
animals, modern dismounted military can readily tailor their BA protection levels based 
on expected threats and activities.     

 
This study evaluated the relationship of the entire ensemble’s biophysical 

characteristics to human thermal responses to environment and physical activity.  
Future research topics include investigating effects of regional ensemble changes that 
may impact human thermoregulation, e.g., evaluating the use and positioning of body 
armor plates on thermal strain.   
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